ODE常微分方程总结

教材:DLI-BSc-Mathematics-Documents/Ordinary Differential Equatrions.pdf at main · JavaZeroo/DLI-BSc-Mathematics-Documents (github.com)

第一章

Explicit First Order Equations

这种形式的 \[ y' = f(x, y) \] 称为 'Explicit First Order Equations' 。

\(y'=f(x)\)

1. Equations with Separated Variables

\[ y' = f(x)g(y) \]

这种可以直接变成 \(\frac{dy}{g(y)}=f(x)dx\)

积分完后 \[ \int\frac{dy}{g(y)}=\int f(x)dx \] IVP: \(y(\xi)=\eta\) \[ \int^y_{\eta}\frac{dy}{g(y)}=\int^x_{\xi} f(x)dx \] 这里需要注意的是如果\(g(y(\xi))=g(\eta)=0\) 那么,直接就有 \(y'=0\) 因此\(y=\eta\) ;

2. 普通的替换

\[ y'=f(ax+by+c) \]

这种情况用\(u(x) = ax+by+c\) 去替换掉变量\(x\) 。原理是\(u'=a+by'(x)=a+bf(u)\)。很关键的一点是,\(u\)\(y\) 都是一次的。求导后刚好是线性关系。

因此 最后得出的\(u(x)\)后可以直接利用\(u(x)=ax+by+c\)得到\(y\)

3. 普通的Homogeneous Differential Equation

\[ y'=f\left(\frac{y}{x}\right) \]

同样的道理用\(u(x) = \frac{y(x)}{x}, (x\neq0)\)替换掉变量\(y\)。有\(y'=u+xu'=f(\frac{y}{x})\) ,可得\(u'=\frac{f(u)-u}{x}\)

因此 最后得出的\(u(x)\)后可以直接利用\(u(x)=\frac{y(x)}{x}\)得到\(y\)

4. 高级的 Homogeneous Differential Equation

\[ y'=f\left(\frac{ax+by+c}{\alpha x+\beta y+ \gamma}\right) \]

这个的核心思想是转换成“普通的Homogeneous Differential Equation”。

首先分析行列式 \[ \left | \begin{matrix} a &b \\ \alpha &\beta \\ \end{matrix} \right | \]

  1. 行列式为零时,说明\(a=\lambda_a \alpha, b=\lambda_b \beta\) 此时 可以直接转换成“普通的Homogeneous Differential Equation”
  2. 行列式不为零的时候,说明方程组有唯一解。

首先解方程组 \[ \left\{\begin{align} ax+by+c&=0\\ \alpha x+\beta y+ \gamma&=0\\ \end{align}\right. \] 可以解出一组\((x_0, y_0)\) 利用这组解将“高级的 Homogeneous Differential Equation”转换成“普通的Homogeneous Differential Equation”

原理是新建坐标系得\(\bar{x}:=x-x_0, \bar{y}:=y-y_0\) 那么在这个坐标系下面原方程就变成了\(\bar{y}(\bar{x}):=y(\bar{x}+x_0)-y_0\)。对这个方程求导可以将\(y\)消掉,将原问题变\(\bar{y}\)\(x\)的关系。这样做的目的就是将“高级的 Homogeneous Differential Equation”转换成“普通的Homogeneous Differential Equation”

\(\bar{y}\)求导后可以发现(利用方程\(\bar{y}(\bar{x}):=y(\bar{x}+x_0)-y_0, ax_0+by_0+c=0, \alpha x_0+\beta y_0+ \gamma=0\)\[ \frac{\bar{y}(x)}{d\bar{x}} = y'(\bar{x}+x_0)=f\left(\frac{a\bar{x}+b\bar{y}(\bar{x})}{\alpha\bar{x}+\beta\bar{y}(\bar{x})}\right) \] 这里就可以像刚才的普通的Homogeneous Differential Equation一样去做了。值得注意的是,这样解出来的\(\bar{y}\)需要转换成原来的\(y\)。这里可以用 \[ y(x):=y_0+\bar{y}(x-x_0) \] 得到最后的\(y\)

The Linear Differential Equation

这种形式的 \[ y' + g(x)y=h(x) \] 称为 'The Linear Differential Equation' 。

这时有两种情况:\(h(x)=0\)\(h(x)\neq0\), 分别称为"homogeneous" 和"nonhomogeneous"

事实上当\(h(x)=0\)也就是"homogeneous"时,就是上面的"Explicit First Order Equations",这里就不在赘述了。

对于\(h(x)\neq0\)的情况,也就是"nonhomogeneous"时,我们需要用到"Method of variation of constants"。

Method of variation of constants:这个方法首先计算出齐次的时候的通解。对于方程\(y'+g(x)y=h(x)\)他的齐次方程的通解是通过解\(y'+g(x)y=0\),可得 \[ y=C\cdot e^{-\int g(x)dx} \] 此时我们将常数\(C\)作为一个与\(x\)的函数\(C(x)\)。这个时候,只需要解出一个\(C(x)\)就是非齐次情况下的答案

那么现在的问题就变成了,如何得到一个\(C(x)\)使得\(y' + g(x)y=h(x)\)

首先先计算\(C'(x)\) \[ \begin{align} y &=C(x)\cdot e^{-\int g(x)dx}\\ y'&=\left( C(x) \right)'\cdot e^{-\int g(x)}+C(x)\cdot \left( e^{-\int g(x)dx }\right)' \\ y'&=C'(x)\cdot e^{-\int g(x)}+C(x)\cdot \left( e^{-\int g(x)dx }\cdot\left(-\int g(x)\right)'\right) \\ y'&=C'(x)\cdot e^{-\int g(x)}+C(x)\cdot \left( e^{-\int g(x)dx }\cdot -g(x)\right) \\ &\Downarrow \\ y'&=C'\cdot e^{-\int g(x)}-gC\cdot e^{-\int g(x)dx} \end{align} \] 然后代入\(y' + g(x)y=h(x)\) \[ \begin{align} L_y \equiv y' + g(x)y&=h(x)\\ L_y&=C'\cdot e^{-\int g(x)dx}-gC\cdot e^{-\int g(x)dx}+gC\cdot e^{-\int g(x)dx}\\ L_y&=C'\cdot e^{-\int g(x)dx}=h(x) \\ &\Downarrow \\ C'(x)&=h(x)\cdot e^{\int g(x)dx} \\ &\Downarrow \\ C(x)&=\int h(x)\cdot e^{\int g(x)dx}dx + C_0 \end{align} \] 现在我们可以知道,当\(y=C(x)\cdot e^{-\int g(x)dx}\)\(C(x)=\int h(x)\cdot e^{\int g(x)dx} + C_0\)时。,有\(y' + g(x)y=h(x)\)。这里有个二级结论

If \(y, \bar{y}\), yare two solutions to the nonhomogeneous equation \(L_y = h\), then \(L(y - y) = L_y - L_{\bar{y}} = 0, i.e., z(x) = y - \bar{y}\) is a solution of the homogeneous equation \(L_y = 0\). Thus all solutions \(y(x)\) of the nonhomogeneous equation can be written in the form \[ y(x)=\bar{y}+z(x) \]

这里面\(z(x)\)就是刚刚的\(y=C\cdot e^{-\int g(x)dx}\)\(\bar{y}\)就是\(C(x)=\int h(x)\cdot e^{\int g(x)dx} + C_0\)\(y=C\cdot e^{-\int g(x)dx}\)的结合中的\(y\),也就是\(\bar{y}=\left(\int h(x)\cdot e^{\int g(x)dx}dx + C_0\right)\cdot e^{-\int g(x)dx}\)

Bernoulli's Equation

这种形式的 \[ y'+g(x)y+h(x)y^{\alpha}=0.\alpha \neq 1 \] 非常的简单,只需要把\(y^{\alpha}\)解决了就可以了。等式去除\(y^{\alpha}\)\[ y'y^{-\alpha}+g(x)y^{(1-\alpha)}+h(x)=0 \] 利用\(z=y^{(1-\alpha)} \implies z'=(1-\alpha)y^{-\alpha}\cdot y'\)替换原式得 \[ \frac{1}{1-\alpha}z'+g(x)z+h(x)=0 \] 现在,就变成了nonhomogeneous的"The Linear Differential Equation"。最后解出\(z\),别忘了替换回\(y\)

Exact differential equations

这种形式的 \[ M(x,y)dx+N(x,y)dy=0,\\ \exists\ U(x, y)\ s.t.\ U_x(x,y)=M(x,y),U_y(x,y)=N(x,y) \]

\(xdx+ydy=0\) is an exact equation, and \(U(x,y)=1/2 (x^2+y^2 )\)is a potential function.

Integrating Factors

Integrating Factors是用来让非 Exact 变成Exact differential equations。

E.g. \(ydx + 2xdy = 0\) is not exact. However, it can easily be made an exact differential equation (in the domain \(x > 0\)) by multiplying the equation by \(1/\sqrt{x}\). The resulting differential equation \[ \frac{y}{\sqrt{x}}dx+2\sqrt{x}dy=0 \] is exact, and a potential function is given by \[ F(x,y)=2y\sqrt{x}=0\ (x>0) \]

对于一个not excat differential equation我们需要找到一个Factor \(U(x,y)\) 使得\(U(x,y)\cdot M(x,y)dx+U(x,y)\cdot N(x,y)dy=0\)变成一个Exact differential equations。

这里有一个"Theorem on potential functions"保证可以找到\(U(x,y)\)

现在的问题就是,如何去找?首先令\(M' = U\cdot M,N'=U\cdot N\)如果\(F_x=M',F_y=N'\)则有\(M'_y=N'_x\)。利用这个关系可以知道

事实上就是\(F_{xy}=F_{yx}\) (Jacobian Matrix)

\[ \begin{align} &(U\cdot M)_y=(U\cdot N)_x\\ \implies &U_y\cdot M+U\cdot M_y=U_x\cdot N+U\cdot N_x \\ \end{align} \] 此时需要考虑,Integrating Factors是只与\(x\)有关还是只与\(y\)有关(只需要选一个)

  1. 假如只与\(x\)有关则\(U_y=0\)则有

\[ \begin{align} U_y\cdot M+U\cdot M_y&=U_x\cdot N+U\cdot N_x \\ U\cdot M_y &= U' \cdot N+U \cdot N_x \\ \frac{1}{U}U'&=\frac{M_y-N_x}{N} \\ (\ln U)'&=\frac{M_y-N_x}{N} \\ U&=e^{\int \frac{M_y-N_x}{N}dx} \end{align} \]

这里的答案不是\(U=C\cdot e^{\int \frac{M_y-N_x}{N}dx}\)的原因是,我们只需要找到一个\(U\),因此你可以认为我们选择\(C=1\)作为答案。下面的情况同理。

  1. 假如只与\(y\)有关则\(U_x=0\)则有

\[ \begin{align} U_y\cdot M+U\cdot M_y&=U_x\cdot N+U\cdot N_x \\ U'\cdot M+U\cdot M_y &= U \cdot N_x \\ \frac{1}{U}U'&=\frac{N_x-M_y}{M} \\ (\ln U)'&=\frac{N_x-M_y}{M} \\ U &=e^{\int \frac{N_x-M_y}{M}} \end{align} \]

Implicit First Order Differential Equations

这种形式的 \[ F(x, y, y')=0 \] 一般来说有两种解决办法。要么通过一些方法获得explicit differential equation,要么就用参数化。

在这里我们只讨论两种情况:

  1. $F(x, y')=0 $, \(F(y, y')=0\)
  2. \(y=f(x,y')\), \(x=f(y,y')\)

第一种情况

对于$F(x, y')=0 $我们使用参数化: \[ \left\{\begin{array}{l} x=\phi(t) \\ y'=\psi(t) \end{array}\right. \] 此时方程变为\(F(\phi(t), \psi(t))=0\),同时我们有 $$ \[\begin{align} y'&=\frac{dy}{dx} \ \text{and} \ \phi'(t)=\frac{d\phi(t)}{dt} \\ dy&=y'dx \ \ \text{and} \ d\phi(t)=\phi'(t)dt\\ y&=\int y'dx + C\\ y&=\int \psi(t)d\phi(t) + C \\ y&=\int \psi(t)\phi'(t)dt +C \end{align}\] \[ 最后得到: \] { \[\begin{array}{l} x=\phi(t) \\ y=\int \psi(t)\phi'(t)dt +C \end{array}\]

. $$

第一种情况2

对于\(F(y,y')=0\)我们仍然参数化: \[ \left\{\begin{array}{l} y=\phi(t) \\ y'=\psi(t) \end{array}\right. \] 此时有\(F(\phi(t),\psi(t)=0\),同时有: \[ \begin{align} y'&=\frac{dy}{dx} \ \text{and} \ \phi'(t)=\frac{dy}{dt} \\ dx&=\frac{dy}{\psi(t)} \ \text{and} \ dy=\phi'(t)dt \\ dx&=\frac{\phi'(t)dt}{\psi(t)} \\ \int dx&= \int \frac{\phi'(t)dt}{\psi(t)} \\ x&=\int \frac{\phi'(t)dt}{\psi(t)} \end{align} \]

An Existence and Uniqueness Theorem

中文名是存在唯一性定理。首先我们介绍Lipschitz condition:

We consider the following initial value problem \[ y' = f(x,y),\ \text{for}\ \xi \leq x\leq \xi+a,\ y(\xi)=\eta \] The main assumptions in the following theorem are that \(f\) is continuous in the strip \(S=J\times\mathbb{R}\) with \(J=[\xi,\xi+a]\) and satisfies a Lipschitz condition with respect to \(y\) in \(S\) \[ |f(x,y)-f(x, \bar{y})|\leq L|y-\bar{y}| \] No restrictions are placed on the value of the Lipschitz constant \(L\geq 0\)

然后引出存在唯一性定理:

Let \(f \in C(S)\) satisfy the Lipschitz condition. Then the IVP has exactly one solution \(y(x)\). The solution exists in the interval \(J: \xi\leq x \leq\xi +a\)

The extension of solutions.

以下三个定理是用于 The extension of solutions.

1️⃣Local Lipschitz condition. The function \(f(x,y)\) is said to satisfy a local Lipschitz condition with respect to \(y\) in \(D\subset R^2\) if for every \((x_0,y_0 )\in D\) there exists a neighborhood \(U=U(x_0,y_0 )\) and an \(L=L(x_0,y_0 )\) such that in \(U\cup D\) the function \(f\) satisfies the Lipschitz condition \(|f(x,y)-f(x,\bar{y})|\leq L|y-\bar{y}|\).

注意!我们一般通过连续性来判断Local Lipschitz condition

If \(D\) is open and if \(f \in C(D)\) has a continuous derivative \(f_y\) in \(D\), then f satisfies a local Lipschitz condition in this set.

2️⃣Theorem on local solvability If \(D\) is open and \(f\in C(D)\) satisfies a local Lipschitz condition in \(D\), then the IVP is locally uniquely solvable for$ (x_0,y_0 )∈D$; i.e., there is a neighborhood \(I\) of$ x_0$ such that exactly one solution exists in \(I\).

3️⃣Theorem on the extension of solutions Let \(f \in C (D)\) satisfy a local Lipschitz condition with respect to \(y\) in \(D\). Then for every \((x_0, y_0)\in D\) the initial value problem \(y' = f (x, y), y(x_0) = y_0\) has a solution that can be extended to the left and to the right comes arbitrarily close to the boundary of \(D\).

最后我们有:

The Peano existence theorem. If \(f(x,y)\) is continuous in a domain \(D\) and \((\xi,\eta)\) is a point in \(D\), then at least one solution of the differential equation \(y′=f(x,y)\) goes through \((\xi,\eta)\). Every solution can be extended to the left and to the right up to the boundary of \(D\).

Linear System

这里开始就是在讨论,常微分方程组。

Systems of n Linear Differential Equations

给出常微分方程组的形式: $$ \[\begin{align} y_1' &= a_{11}(t)y_1+\cdots+ a_{1n}(t)y_n+b_1(t) \\ &\ \ \vdots \\ y_1' &= a_{11}(t)y_1+\cdots+a_{1n}(t)y_n+b_1(t) \\ \end{align}\] \[ 或者: \] '=A(t)+(t)\ \ A(t)=(a_{ij}(t)), (t)=(b_1(t), , b_n(t))^ $$ 值得一提的是,存在唯一性定理在常微分方程组也同样适用。

Homogeneous Linear Systems

对于齐次的形式,常微分方程组就变成了: \[ \mathbf{y}'=A(x)\mathbf{y} \] 此时,根据存在唯一性定理有: \[ \exist \text{ exactly one solution } \mathbf{y}=\mathbf{y}(t;\tau,\boldsymbol{\eta})\ \forall \tau \in J, \boldsymbol{\eta}\in \R^n\text{ or }\C^n \] 当然,齐次常微分方程组有一些重要的性质:

  1. $ $ in $ J$ is a solution of the homogeneous linear systems.
  2. There exist \(n\) linearly independent solutions \(_1,\dots,\mathbf{y}_n\). Every such set of \(n\) linearly independent solutions is called a fundamental system of solutions. If \(\mathbf{y}_1,\dots,\mathbf{y}_n\) is a fundamental system, then every solution \(\mathbf{y}\) can be written in a unique way as a linear combination \(\mathbf{y}=C_1 \mathbf{y}_1+\dots+C_n \mathbf{y}_n\).
  3. A system of \(n\) solutions \(\mathbf{y}_1,…,\mathbf{y}_n\) can be assembled into an \(n\times n\) solution matrix \(\Phi(x)=(\mathbf{y}_1,\dots,\mathbf{y}_n )\). If \(n\) solutions \(\mathbf{y}_1,\dots,\mathbf{y}_n\) are linearly independent, then \(\Phi(x)\) is a system of \(n\) solutions \(\mathbf{y}_1,\dots,\mathbf{y}_n\) can be assembled into an \(n\times n\) solution matrix \(\Phi(x)=(\mathbf{y}_1,\dots,\mathbf{y}_n )\). If \(n\) solutions \(\mathbf{y}_1,\dots,\mathbf{y}_n\) are linearly independent, then \(\Phi(x)\)is a Fundamental Matrix.

The Wronskian

现在讨论一下,齐次常微分方程的解,是线性无关还是线性相关。

  • The Wronskian. If \(\Phi(x)=(\mathbf{y}_1,\dots,\mathbf{y}_n )\) is a solution matrix of \(\mathbf{y}^′=A(x)\mathbf{y}\), then its determinant \(W(x)=|\Phi(x)|\)is called the Wronskian determinant.

  • Theorem If \(\mathbf{y}_1,\dots,\mathbf{y}_n\) are linearly dependent in \(J\), then the Wronskian \(W(x)\equiv0\).

  • Theorem If \(\mathbf{y}_1,…,\mathbf{y}_n\) is a fundamental system of equation \(\mathbf{y}'=A(x)\mathbf{y}\), then the Wronskian \(W(x)\neq0\) in \(J\).

  • Theorem. There exists a fundamental system of solutions for equation \(\mathbf{y}'=A(x)\mathbf{y}\).

因此,我们先求出\(n\)个解,然后再去判断这\(n\)个解的Fundamental Matrix的行列式,也就是The Wronskian,是否为零。

Inhomogeneous Systems

对于非齐次的常微分方程组,就是最开始样子: \[ \mathbf{y}'=A(t)\mathbf{y}+\mathbf{b}(t) \] 下面这个定理类似线性代数,非齐次方程组的通解是,齐次方程组的通解+非齐次方程组的特解:

  • Theorem. Let \(\tilde{\mathbf{y}}(x)\)be a fixed solution of the inhomogeneous equation (1). If \(\mathbf{y}_0 (x)\) is an arbitrary solution of the homogeneous equation, then \(\mathbf{y}(x)=\tilde{\mathbf{y}}(x)+\mathbf{y}_0 (x)\)is a solution of the inhomogeneous equation, and all solutions of the inhomogeneous equation are obtained in this way.